您所在的位置: 首页 >> 团队队伍 >> 教学科研人员 >> 团队博士后 >> 正文

教学科研人员

李岩
发布时间:2023-02-04     浏览量:   分享到:

李岩
职称/职务:

电话:

个人主页:
电子信箱:yanli@snnu.edu.cn
研究方向:计算复杂性与符号计算、机器证明、模式识别、孤子理论
办公地点:文津楼3505


个人简介

李岩,女,内蒙古赤峰人,计算机软件与理论专业博士,主要研究方向为计算复杂性与符号计算,机器证明,模式识别,孤子理论等。2023.01-至今,永利官网,永利yl23411,计算机科学与技术博士后; 2016.09- 2022.12永利官网,永利yl23411,非线性科学与符号计算实验室,硕士与博士; 2012.06-2016.07, 中国矿业大学(徐州),计算机科学与技术学院,学士。


学术论文

[1] Yan Li, Ruoxia Yao*, Yarong Xia, Senyue Lou. Plenty of novel interaction structures of soliton molecules and asymmetric solitons to (2+1)-dimensional Sawada-Kotera equation. Communications in Nonlinear Science and Numerical Simulation. 2021, 100:105843.

[2] Ruoxia Yao*, Yan Li, Senyue Lou. A new set and new relations of multiple soliton solutions of (2+1)-dimensional Sawada-Kotera equation. Communications in Nonlinear Science and Numerical Simulation, 2021, 99:105820.

[3] Yan Li, Ruoxia Yao*, Yarong Xia. Molecules and new interactional structures to (2+1)-dimensional generalized Konopelchenko-Durbrosky-Kaup-Kupershmidt equation. Acta Mathematica Scientia. 2023, 43B(1): 80-96.

[4] Yan Li, Xiazhi Hao, Ruoxia Yao*, Xiazhi Hao, Yali Shen. Nonlinear superposition among lump soliton, stripe solitons and other nonlinear localized waves of the (2+1)-dimensional cpKP-BKP equation. Mathematics and Computers in Simulation, 2023, 208, 57-70.

[5] Xiazhi Hao*, Yan Li. Interaction phenomena between solitons, lumps and breathers for the combined KP3-4 equation. Nonlinear Dynamic, 2022, https://doi.org/10.1007/s11071-022-08191-y.

[6] Yarong Xia, Ruoxia Yao*, Xiangpeng Xin, Yan Li. Nonlocal symmetry, Painlevé integrable and interaction solutions for CKdV equations. Symmetry-Basel, 2021, 13(7):1-16.

[7] Yarong Xia, Ruoxia Yao*, Xiangpeng Xin, Yan Li. Trajectory equation of a lump before and after collision with other waves for (2+1)-dimensional Sawada-Kotera equation. Applied Mathematics Letters, 2023, 135, 108408.


主持(或参与)的项目

[1] 陕西省自然科学研究重点项目:Sawada-Kotera 族方程的非等价双线性化及孤子分子 (No. 2021JZ-21, 2021.01-2023.12),参与

[2] 国家自然科学基金面上项目非线性方程的多Hirota双线性形式和可积性 (No.12271324, 2023.01-2026.12), 参与